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Abstract

Several musical genres such as pop, jazz, or classical, are based on a tight underly-
ing harmonic background that defines the structure of the piece. This underlying
progression then defines the piece at a higher level of abstraction, that mostly
varies in synchronicity with the pulse. It can therefore be represented by a "chord
sequence"”, each chord representing the harmonic content of a beat. In this project,
our aim is twofold. First, we want to generate chord progressions of jazz music,
represented as sequences of chord labels, with the help of machine learning based
generative models. Secondly, we want to generate varying sequences of notes based
on the generated chord sequence. Thus, we propose to train a Variational Auto-
Encoder (VAE) on existing chord sequences in order to extract a multi-dimensional
space that will distribute a set of existing chord sequences, that can afterwards be
used to generate an entire harmonic structure. We will resort to recurrent neural
networks, a specific type of neural networks used for high-dimensional sequence
modeling, in order to encode the dynamical structure of chord progressions. We
will then propose various arpeggiating mechanisms in order to convert this struc-
ture into an existing sequence of notes, convertible as MIDI sequences and hence
playable in most audio software.

1 Introduction

The development of machine learning based generative systems that occurred within the last decade
provided a flourishing amount of different models, applicable to most domains thanks to the increased
computational power of their underlying technical background. Among them, the variational auto-
encoder (VAE) is a versatile model that has shown simultaneously great generalization properties and
good reconstruction abilities, despite its light structure. VAEs are based on two processes : an encod-
ing process, projecting input data to an abstract representation called the latent space, and a decoding
process, giving back the data corresponding a given latent position. This latent space can thus be
understood as a compressed representation of the learned database, whose reduced number of dimen-
sions can then be navigated freely to generate data corresponding with the underlying structure of data.

The idea of this project is then to leverage variational auto-encoding to generate chord sequences, that
can be converted in note sequences using an arpeggiator. The first task in hence to train a VAE on a
selected database, providing an invertible representation of the learnt sequences. However, choosing
a straightforward training for jazz standards is non-trivial for several reasonf] We will then resort to
variants of recurrent neural networks, a specific type of neural networks developed specifically to

*https://esling.github.io/atiam-ml-project
Zwe can argue : variable length, interest of modeling transitions between block of chords, a dauntingly high
number of input dimensions.
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model dynamical series. The second task will then consist in sampling this latent space to generate
novel chord sequences, used as an input to an arpeggiator, to produce an end-to-end system from the
representation to a sequence of notes.

2 Variational Auto-Encoder

In this project we will use PyTorch, a versatile machine-learning Python framework that you will use
to code your Variational Auto-Encoder (VAE).

Exercise 0 : First bibliography

1. Put your glasses and read this nice tutorial on variational auto-encoding of Blei et al.| [2017],
and then some articles grounding the topic Kingma and Welling|[2013]],|[Higgins et al.|[2017]

2. If you feel it, read other papers (check the provided bibliography).

Exercise 1 : Install and learn Pytorch

This exercise only includes basic programming skills that you will need for the following work. If we
already have enough expertise, you can skip it but I'd rather recommend you to have a look.

1. Install PyTorch on your device if it isn’t already done.
2. Follow the basic tutorials and learn how it works http://pytorch.org/tutorials/.

3. Learn how to implement basic models, therefore use torch.nn library.

Exercice 2 : Code the VAE

You will know code your own VAE (finally). You can either look at the main article’s imple-
mentation, or rely on this nice tutorial https://wiseodd.github.io/techblog/2016/12/10/
variational-autoencoder/ with nice mathematical explanations, programmed in Keras (other-
wise it’s too simple).

1. Based on the tutorial or another source you will find, develop your very own VAE.

2. Test your model on the MNIST dataset. As the output is binary, formulate what should be
its loss function.

3. Compare your models to the VAE results from Kingma & Welling Kingma and Welling
[2013].

4. TImplement a warm-up. For example (3 varying from O to 1.

3 Chord sequence generator

Exercise 3 - Chord representations for machine learning. Our different models will be trained
on the real book dataset (Choi et al.| [2016]]) composed of 2847 tracks taken from the real book[ﬂ
The dataset is available at this link : https://github. com/keunwoochoi/lstm_real_book.

The original chord alphabet uses a vocabulary of 1259 labels. This great diversity comes from the
precision level in the chosen syntax (Figure[I). Starting with the assumption that the generation of
coherent chord progressions only needs information on harmonic functions (without taking harmonic
enrichments into account), we propose first to apply a hierarchical reduction of the elements from the
full chord alphabet Ag to obtain three different chord alphabets (A;, Ao, A3) of increasing precision.
They represent different hierarchical organization corresponding to the harmonization of the major
scale using triads or tetrachords, which is the most common way of writing chord progressions (the
mapping will be provided) :

3The real book dataset is a compilation of jazz classics that has been firstly collected by the students of the
Berklee College of Music during the seventies. As of today we count a lot of existing books (e.g Realbook (1, 2,
3), New Realbook (1, 2, 3), the Fakebook, the real Latin book)
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<pitchname> ::= <natural> | <pitchname> <modifier>

<natural> si= WAW | WRW | mQm | wpw | WEW | wEn | ongw

<modifier> i= bt | E

<ilist> r:=  ["#"] <interval> ["," <ilist>]

<interval> 1i=  <degree> | <modifier> <interval>

<degree> r:=  «digit> | <digit> <degree> | <degree> "O"

(diglt) 1= "]_“ | "2“ | “3“ ‘ Ilqll ‘ IIEII ‘ Ilsll ‘ II?II | IISH | lIgH

<shorthand> ::= "maj" | "min" | "dim" | “aug" | "maj7" | "min7" | 7"
| "dim7" | "hdim7" | "minmaj7" | "majé" | "ming" | "9"
| "maj9" | "min9" | "sus2" | “sus4"

Figure 1: Syntax of Chord Notation in the Realbook dataset, image taken from |Harte|[2010]

Aj : Major, minor, diminished: N (which means no chord), maj, min, dim;
Ag : Major, minor, seventh, diminished: N, maj, min, maj7, min7, 7, dim, dim7,

As : Major, minor, seventh, diminished, augmented, suspended: N, maj, min, maj7, min7, 7, dim,
dim7, aug, sus;

In the case of symbolic data, several transforms can be made to turn them understandable by the
VAE. One of the most common way is to use Categorical or Multinomial distributions, that can be
understood as generalizations of resp. Bernoulli and Binomial distributions for multi-class problems.

1. Read about Categorical and Multinomial distributions (Wikipedia is fine on this one...) and
check out their PyTorch implementations (module torch.distributions).

2. Extract some information on the dataset (total number of chords for each chord class, chord
repetition within chord sequences, chord transition matrix, ...) in order to choose the most
relevant alphabets for the sequences.

3. Propose a way to model chords as Categorical or Multinomial distributions. Make some
propositions and discuss them with us, so we can make sure that you don’t go the wrong
way!

Exercise 4 - Data loading and training Now that you get the perfect probabilistic representation
for jazz chords, we will train our VAE on our chord sequences. As a first experiment we will train our
VAE on short chord sequences, as training on single chords would be insignificant for our purpose,
and training on full standard is for the moment impossible for the reasons exposed in the preliminary
introduction. Furthermore, this slicing will provide the baseline for the full sequence generation that
will be tackled in the next section.

1. What is at your opinion the relevant number of chords that should be present in the sequence?

2. Set a list of important parameters of your model (data, architecture, hyperparameters...) and
forecast their influence. Make sure that these parameters can be easily set up by the user in
the training script.

3. Read the tutorial E] and and implement your custom chord sequence dataloader.

4. Adapt your VAE to generate sequence of categorical / multinomial outputs, and define the
training procedure (stopping criterion, ...)

5. Don’t forget to add saving/plotting functions to monitor your training (the bravest could use
the wonderful torch.utils.tensorboard utilitary).

*https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
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Figure 2: A recurrent variational auto-encoding needs a way to get a single latent vector from the
output of a recurrent neural network. A "stop" criterion can also be given, in order to let the model
decide the length of the generated sequence.

6. Verify your code works on a small subset of data, and send it to me so I can run them on our
sweet GPUs. We will check the current state of your work at this point.

7. Propose evaluation procedures in order to check the performance of your VAE : reconstruc-
tion scores, latent space sampling, etc... to quickly check what your model can do.

4 Harmonic arpeggiator: generate notes from chord sequences

Exercise S - Arpeggiating. You can rely on the music21 library to convert the output of your VAE
to MIDI file. A code sample will be given, as this is not the core of your evaluation. But :
1. Select, randomly or using a pattern, a way to convert a given chord to a sequence of notes.

2. (optional but cool) make your sequence swing! add some ryhthmic flavour to your sequence.

5 Recurrent learning of chord sequences

Congratulations! You trained your first VAE on chord sequences. However, for the moment you are
only able to generate short sequences from your latent space, which is not enough to generate a full
standard. We will then find a way to "glue" several chord sequences into a single latent vector. This is
possible with the recurrent variational auto-encoder formalism, that uses recurrent neural networks
to encode a full sequence of data.

Exercise 6 - Recurrent neural networks. You will first have to get familiar with recurrent neural
networks.

1. Read this nice tutorial on recurrent neural networks : https://stanford.edu/
“shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

2. If you can / are interested, check the supplementary material.

3. Discuss the difference between the different recurrent neural networks. Which one should
be used?

4. Check their implementation in pytorch (package torch.nn), and propose quick test codes
for RNN, GRU and LSTM modules.


https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Exercise 7 - Variational recurrent auto-encoding. Now, you will decide how to combine recur-
rent neural networks with variational auto-encoding. The idea here is to model a full score from a
sequence of chord sequence slices. The problem is depicted fig. [5}

* Make some propositions to obtain a single latent space from the output of a recurrent neural
network. Check this with us!

* What do you think of the corresponding Evidence Lower-Bound? Propose one, and justify
it in the report.

* Find a way to encode / decode sequences of varying length, and discuss that in the report.

* Adapt your VAE to make it recurrent, and give us your code so we can train on our GPUs.
As in exercise 4, provide all the training / evaluation routine, and show the generations /
latent spaces in your report.

* Whatever they are, discuss the results. Which problems can you see here, and can you figure
out their origins? How could them be fixed?

Advices

* As you count several members in your power team, do not hesitate to parallelize the work
in order to save some time and to have things prepared when you need it. For example,
exercise 3 and 5 can be made in parallel of exercises 2 and 4. You will move on much faster
if you distribute and schedule these tasks among you!

* Make recurrent updates between all of you of your individual advances, such that everybody
stay in touch and get ready to help another member on one task.

* The project is quite ambitious, but you will be evaluated more on your workflow and the
developments / conclusion in the report than on the final results. We are here to help you, do
not hesitate!

* [Important] we shall run your models on GPU, that can be then CUDA compatible. Do not
forget to check the CUDA semantics hereE] in order to make your model CUDA compatible.
Also, make your code as elegant as possible (using all the power of the torch.nn library), so
that we are able to fix your code in case (a hellish style code means a hellish implementation
score in the final grade..!).
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