
ML Project ATIAM
Théis Bazin
Constance Douwes
Philippe Esling

Spectrogram Inpainting
Discrete latent representations for lightweight DAFx

2020-11-24
theis.bazin@ircam.fr

constance.douwes@ircam.fr
philippe.esling@ircam.fr

Abstract

Deep learning models of audio offer impressive results and have allowed to steadfastly improve on

the state-of-the-art, both for quantitative MIR tasks as well as for creative usages ; yet, with typical

sounds sampled at high frequencies, applying deep learning techniques remains computationally difficult.

This is even more true for interactive applications, where maintaining a low latency for the proposed

systems is essential to providing smooth user-experiences. The recently proposed Vector Quantized-VAE

(VQ-VAE) framework allows to address this challenge by learning a highly compact and compressed

representation of signals as discrete 2D grids of code indexes that can be used as a convenient, high-level

input representation for subsequent modelling and processing.

In this project you’ll become familiar with the VQ-VAE paradigm and apply it on audio data (first on the

NSynth dataset and optionally on an audio dataset of your choice) to obtain compact representations

of sounds. We will then use this representation to explore potential creative uses, in the form of a

Gaussian blur-like audio processing effect, akin to image processing. This amounts to learning localized

distributions of the code indexes, and you will resort to strong local independence assumptions in order

to again keep the computational load low. Finally, you will be tasked with computing the energetic cost of

both model training and inference, inviting you to get familiar with rising concerns in the Deep Learning

community regarding the environmental impact of the field.

Global instructions

Generalities

Deadline .January 2021

Organization . Group of 3 to 4 students

Repository location .GitHub

Project folders

�

code/ . containing your PEP8-compliant code, organized in modules

�

report/ . containing your final report in PDF format

Report

Redaction .LATEX using the provided formatting style

Language . English

Maximum number of pages . 8 pages

Evaluation grid

Report - Including content, results and style . 7 pts

Code - Accuracy, evaluation and coding style . 13 pts

For more information on the project visit the ATIAM Machine Learning projects homepage1.

1https://esling.github.io/atiam-ml-project/

SPECTROGRAM INPAINTING 1

https://esling.github.io/atiam-ml-project/

1. Introduction

We first introduce the motivations for this project as well as the suggested approach that you will be

implementing. This introduction is a bit long, but this is mainly to transmit to you the reasoning behind

the proposed approach and clarify the structure of the project for you.

1) Goal

The goal in this project is to help you get familiar with deep learning for the interactive transformation

of audio signals. To this end, you will build a rudimentary digital audio effect based on local (in

the time-frequency plane) transformations of sounds, akin to the Gaussian blur effect typical in image

processing software. This effect will operate by regenerating local portions of the sound conditioned on the

surrounding audio content (i.e. at neighbouring time steps and frequencies), a process called inpainting.

Crucially, performing inpainting in a principled, stochastic manner requires building a model that is able to

learn a factorization of the probability distribution of sounds in local factors of the form (with X ∈ RN×M

a spectrogram):

φ(X, t, f) = p(Xt,f |{neighbours of Xt,f})

Doing this naively would be intractable2, since audio data, typically sampled at high frequencies above

16 kHz, tends to be very high-dimensional and the resulting probability distributions would involve an

exploding amount of factors.

Furthermore, for interactive, creative uses, it is desirable to provide the user with efficient control

mechanisms, requiring a fine balance between fine-grained control, for instance sampled at the audio

rate, which would be precise but cumbersome and of little practical use, and only offering very high-level

controls, not enabling the user to reach desired results. Ultimately, a proper interactive system should

strike the balance between enabling the user to effectively perform changes and actions, and letting them

feel like they really are the one controlling the output and it’s not just the computer creating stuff on its

own3. We will therefore have to devise a means of compressing the data to make further processing both

computationally tractable and convenient for interaction.

2) Proposed approach

In this assignment, we propose to adopt a two-step approach to address those issues. Instead of directly

modeling the audio signal (or a high-resolution spectrogram representation of it), we will learn two

complementary systems. The first, based on the recently proposed Vector Quantized-VAE [5, 6] deep-

learning architecture, will allow you, through both coarse downsampling and a discretization mechanism,

to obtain an intermediate representation of the sounds as compact grids of integer-valued code indexes. This

encoder-decoder architecture is depicted in a simplified fashion on Figure 1. The interest of this approach

is twofold: by moving from fine-grained, floating-point valued data to small grids of integers, further

modeling will be made much simpler and more efficient4. Second, we note that the downsampling step

introduced by this approach additionally offers a convenient way to address the "operating-scale" concern

presented above: a single element of the resulting grid of integers will describe the local content for a

whole region in the time-frequency plane. By choosing the amount of downsampling performed by the

model, you will be able to decide the scale of transformations performed by the model, either micro or

macro.
2Especially on a laptop without a deep learning-capable GPU like the ones we expect you to be working on.
3Or at least, that is what we believe!
4This idea of learning powerful, compact representations of data in an automated fashion is at the core of deep learning.

SPECTROGRAM INPAINTING 2

Codemap extract
Integer-valued

VQ-VAE-2
Encoder

Input spectrogram
Real-valued

VQ-VAE-2
Decoder

Reconstructed
spectrogram
Real-valued

Figure 1: Proposed VQ-VAE-2 architecture for spectrograms. The encoder converts spectrograms into
compact integer maps. The decoder is trained to reconstruct the original spectrogram from these discrete
codemaps.

Using the resulting representation, your next task will thus be to learn the local probability distributions

of these 2D code grids. To this end, you will again have to resort to strong simplifying assumptions in

order to make this modeling tractable. Here, one could make use of powerful autoregressive models such

as Transformer-based architectures, but we will keep things more simple and accessible for this part and

require you only to train a classic, lightweight approach, widely used for instance in Natural Language

Processing: a Naive Bayes classifier. This model replaces the complex probability distribution with a much

sparser one through coarse independence assumptions and approximates the previously described local

factors as:

p(Xt,f |{neighbours of Xt,f}) ≈
∏

(t′,f ′) neighbours of (t,f)

p(Xt,f |Xt′,f ′)

This approximates requires only a linear number of factors, making modeling much easier. Interactively

transforming a sound then amounts to picking a zone in the sound and resampling it according to the

probability distribution computed above, using the values of its neighbours as conditioning information.

2. Preliminary work

Exercise 0: familiarize yourself with PyTorch and other useful libraries. This exercise only includes

learning or refreshing basic programming skills that you will need for the following.

1. Install PyTorch and get familiar with it through basic tutorials: http://pytorch.org/tutorials/

2. Install and read about relevant libraries for audio signal processing: you might be familiar with

librosa5 by now, we nonetheless recommend also checking out the latest release of torchaudio6

for a solution readily integrated into the PyTorch framework (file I/O, spectrograms computation. . .),

this could help you gain some time and clarify your code!

We recommend using anaconda or its more lightweight cousin miniconda7 for managing Python en-

vironments and dependencies, in order to build a clean and common environment for your project.

Furthermore, including an environment.yml or requirements.txt file to your final submission for the

reviewers to reproduce your results would certainly be appreciated!8

5https://librosa.org/doc/latest/index.html
6https://pytorch.org/audio/stable/index.html
7Both can be found at https://www.anaconda.com/.
8And is generally considered good practice for your future undertakings.

SPECTROGRAM INPAINTING 3

http://pytorch.org/tutorials/
https://librosa.org/doc/latest/index.html
https://pytorch.org/audio/stable/index.html
https://www.anaconda.com/

3. Vector Quantization

In this first part of the work, you are expected to extend on the VAE approach you studied during the class

lectures and implement the Vector Quantization layer for the VQ-VAE. To begin with, read the two original

papers by Deepmind introducing the VQ-VAE: Neural Discrete Representation Learning [5] and Generating
Diverse High-Quality Images with VQ-VAE-2 [6]. If you have questions on those, feel free to reach out to us

at this point!

1) MNIST VQ-VAE

You will start by prototyping the VQ layer on the simple and easily accessible MNIST [4] dataset of

handwritten digits.

Exercise 1: Implementing the VQ-VAE

1. Implement a simple Vector-Quantization layer, which takes as input a FloatTensor containing a

batch of images, projects it onto a dictionary of codewords, and returns both the indexes of the

codewords used (an IntTensor) and the quantized version (a FloatTensor), i.e. the projection of

the input onto the dictionary of codewords. Crucially this requires:

(a) Implementing the stop-gradient operator sg needed to properly control the flow of gradients

in the VQ-VAE loss expression,

(b) Implementing an appropriate reshaping and projection operation onto the dictionary of

codewords.

2. Integrate this layer into a VAE built for MNIST (using the architecture of your choice, Fully-

Convolutional, Fully-Connected, ResNet. . . it doesn’t matter that much, we’re only interested in

checking if the results are reasonable enough at this point!).

? Show your code and results to your supervisors ?

Exercise 1*: improving the VQ-VAE (optional) At this point you should have a rudimentary but

operational VQ layer, you can (and should!) move on to the following. Remember that the goal of this

project is to build the full sound-editing system, even with basic and imperfect building blocks, rather

than pushing a single component of this system to perfect results. Nonetheless, if you wish to improve the

architecture of your layer, you can look up the following tweaks for the VQ-VAE (you can draw inspiration

from the Jukebox paper by OpenAI [1], in which the authors propose an application of VQ-VAEs to audio

at the waveform level and list some of those "tricks-of-the-trade"!):

� Replacing the loss expression to use Exponential Moving Averages (EMA),

� Implementing codeword restarts, where less frequently "used" codewords are periodically replaced

with a vector drawn at random from the layer’s input,

� Devising a better-than-just-random way of initializing the codebook.

2) Spectrogram VQ-VAE

Exercise 2: audio data-loading In this second step, you are expected to build a data-loading stack

to apply the previously designed model to spectrograms. You can draw inspiration from the approach

described in the GANSYNTH paper [3] to get some ideas of how to do this, but generally any pipeline

SPECTROGRAM INPAINTING 4

which returns batched spectrograms from audio files "on-the-fly" would be a great start. We recommend

you perform your experiments on the NSYNTH dataset of instrumental sounds [2], since it is standard and

convenient to work with, all sounds having a fixed duration of 4 seconds.

Feel free to experiment around with representation parameters (hop-length, Nfft . . .) and model

hyperparameters (dimension and number of codewords, architecture of the encoder and decoder...) to try

and improve the reconstruction quality of your spectrogram VQ-VAE.

? Show your code and results to your supervisors ?

4. Codemap Inpainting

You now have a way of converting back and forth from spectrograms to compact, discrete codemaps. You

will now be building a model to predict probability distribution for position in those codemaps, using

conditioning information from the neighbours. In order to keep the relevant distributions tractable, strong

independence assumptions have to be made. We recommend first experimenting with a very coarse Naive
Bayes classifier before trying anything more involved.

Exercise 3: Naive Bayes classification Look up the ideas behind the Naive Bayes model and implement

a Naive Bayes classifier for your codemaps. It should take a position and the values of the surrounding

cells as input, and return a distribution over the dictionary of codewords for the current position. You can

check-up the scikit-learn library for a ready-to-use implementation of Naive Bayes.

? Show your code and results to your supervisors ?

Exercise 3*: Experimenting with other classification methods (optional) If you have made it this

far, congrats! You can now try more advanced techniques to predict the desired local distributions of codes.

For instance, you could train an autoregressive model such as an LSTM or a Transformer on a linearized

version of the code grids. But again, feel free to try things out, this area here is very open!

5. Making the model go

Equipped with the two models built in the previous section, you can now write some scripts to interactively

or programatically transform sounds at the command-line. You can also now experiment with various

ways of editing sounds, have some fun and propose some ideas!

6. Revisiting the approach: environmental concerns in deep learning

References

[1] Prafulla Dhariwal et al. “Jukebox: A Generative Model for Music”. In: 2020. arXiv: 2005.00341

[eess.AS]. URL: http://arxiv.org/abs/2005.00341.

[2] Jesse Engel et al. “Neural Audio Synthesis of Musical Notes with WaveNet Autoencoders”. In:

Proceedings of the 34th International Conference on Machine Learning - Volume 70. ICML’17. Sydney,

NSW, Australia: JMLR.org, 2017, 1068–1077.

[3] Jesse H. Engel et al. “GANSynth: Adversarial Neural Audio Synthesis”. In: 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,

2019. URL: https://openreview.net/forum?id=H1xQVn09FX.

SPECTROGRAM INPAINTING 5

https://arxiv.org/abs/2005.00341
https://arxiv.org/abs/2005.00341
http://arxiv.org/abs/2005.00341
https://openreview.net/forum?id=H1xQVn09FX

[4] Yann LeCun and Corinna Cortes. “MNIST handwritten digit database”. In: (2010). URL: http:

//yann.lecun.com/exdb/mnist/.

[5] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. “Neural Discrete Representation Learn-

ing”. In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon et al. Curran Asso-

ciates, Inc., 2017, pp. 6306–6315. URL: http://papers.nips.cc/paper/7210-neural-discrete-

representation-learning.pdf.

[6] Ali Razavi, Aäron van den Oord, and Oriol Vinyals. “Generating Diverse High-fidelity Images with

VQ-VAE-2”. In: Advances in Neural Information Processing Systems 32, NeurIPS 2019, 8-14 December
2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach et al. 2019, pp. 14837–14847. URL: http:

//papers.nips.cc/paper/9625-generating-diverse-high-fidelity-images-with-vq-vae-

2.

SPECTROGRAM INPAINTING 6

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://papers.nips.cc/paper/7210-neural-discrete-representation-learning.pdf
http://papers.nips.cc/paper/7210-neural-discrete-representation-learning.pdf
http://papers.nips.cc/paper/9625-generating-diverse-high-fidelity-images-with-vq-vae-2
http://papers.nips.cc/paper/9625-generating-diverse-high-fidelity-images-with-vq-vae-2
http://papers.nips.cc/paper/9625-generating-diverse-high-fidelity-images-with-vq-vae-2

	Introduction
	Goal
	Proposed approach

	Preliminary work
	Vector Quantization
	MNIST VQ-VAE
	Spectrogram VQ-VAE

	Codemap Inpainting
	Making the model go
	Revisiting the approach: environmental concerns in deep learning

