
ATIAM 2019 - ML Project

Granular synthesis using variational learning

Constance Douwes1, Axel Chemla–Romeu-Santos1 Philippe Esling1
1 Institut de Recherche et Coordination Acoustique Musique (IRCAM)
UMPC - CNRS UMR 9912 - 1, Place Igor Stravinsky, F-75004 Paris

{douwes, chemla, esling}@ircam.fr

November 2019

Abstract

Generative systems are machine-learning models whose training is
based on two simultaneous optimization tasks. The first is to build a
latent space, that provides a low-dimensional representation of the data,
eventually subject to various regularizations and constraints. The second
is the reconstruction of the original data through the sampling of this
latent space. These systems are very promising because their space is a
high-level, ”over-compressed” representation that can be used as an inter-
mediate space for several tasks, such as visualization, measurements, or
classification. The main goal of this project is to use variational models
for raw audio in order to create a granular synthesizer based on latent
sampling.

1 Introduction

Among recent generative systems found in the literature, several have had a large
success in the machine learning community. Among them, we find the varia-
tional auto-encoder (VAE) which has shown great generalization properties and
good reconstruction capabilities despite its light structure. VAEs are based on
two structures : first an encoder, that projects input data to an abstract space
called the latent space, and a decoder, that gives back the corresponding data
from the latent position. Latent space can thus be understood as a representa-
tion for the learned database, that can be navigated freely to generate coherent
data with the original data space.

The idea behind this project is to use VAE to produce audio grains that
could serve a granular synthesizer. The first task in hence to train a VAE
to reproduce audio grains given a selected database. Then the second task is
to sample the latent space to generate audio grains, material of the granular
synthesizer.

1



2 Variational Auto-Encoder

First, you will have to learn PyTorch, a machine-learning Python framework
that you will use to code your Variational Auto-Encoder (VAE).

Exercise 0 : Bibliography

1. Put your glaces and read the nice tutorial on variational auto-encoding of
Blei [1], and the main articles of variational auto-encoders [3, 2]

2. If you feel it, read other papers

Exercise 1 : Install and learn Pytorch

This exercise only includes basic programming skills that you will need for the
following work. If we already have enough expertise, you can skip it but I’d
rather recommend you to have a look.

1. Install PyTorch on your device if it isn’t already done.

2. Follow the basic tutorials and learn how it works http://pytorch.org/

tutorials/.

3. Learn how to implement basic models, therefore use torch.nn library.

Exercice 2 : Code the VAE

You will know code your own VAE (finally). You can either look at the main ar-
ticle’s implementation, or rely on this nice tutorial https://wiseodd.github.
io/techblog/2016/12/10/variational-autoencoder/ with nice mathemati-
cal explanations, programmed in Keras (otherwise it’s too simple).

1. Based on the tutorial or another source you will find, develop your very
own VAE.

2. Test your model on the MNIST dataset. As the output is binary, formulate
what should be its loss function.

3. Compare your models to the VAE results from Kingma & Welling [3].

4. Implement a warm-up. For example β varying from 0 to 1.

3 Audio grain generator

Exercise 3 : Datasets

1. Choose a database you want to work with, it can be drum samples, syn-
thetic samples (from DIVA synthesizer) or classical instrument samples
(violin / piano /flute ...). I have all these types of datasets which can save
you time (precious at that point of the project).

2

http://pytorch.org/ tutorials/
http://pytorch.org/ tutorials/
https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/
https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/


2. Create your own one if you feel like it (waveform only) but don’t spend
too much time on it.

Exercise 4: Grain-VAE training

1. Now that you have a functional VAE, change it for continuous outputs (in-
stead of binary ones before). Be careful you have now to output a Gaussian
distribution, once again formulate what should be its loss function.

2. Fix a grain length (for example 1024 points sampled at 22,05k). Then
create a convolutional encoder and decoder with several 1D convolutional
layers (and transposed ones).

3. Don’t forget to add saving and plotting functions.

4. Verify your code works, and send it to me so I can run them on our sweet
GPUs.

4 Granular synthesizer

Exercise 5 : Simple Granular Synthesizer

1. Do some tutorials on Max (or on PureData) to be comfortable with
groove∼ ,cycle∼ ,buffer∼ ,kslider objects. The max helper is es-
sential and very useful.

2. Create either on Max (or on PureData) a granular synthesizer based on
sample sampling

Exercise 6 : Variational Granular Synthesizer

Comming very soooooon

5 Have fun

1. We now have a variational granular synthesizer. Now that the main core is
developed, how could you improve the interaction of a user with this syn-
thesizer (additional knobs, additional options, you are free about almost
anything...!) ?

2. Make an article..?

3. Max for Live ;)

3



References

[1] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference:
A review for statisticians. Journal of the American Statistical Association,
112(518):859–877, Feb 2017.

[2] Irina Higgins, Löıc Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew M Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae:
Learning basic visual concepts with a constrained variational framework. In
ICLR, 2017.

[3] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv:1312.6114, 2013.

4


	Introduction
	Variational Auto-Encoder
	Audio grain generator
	Granular synthesizer
	Have fun

