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Abstract

Recent advances in neural audio synthesis have made possible the creation of ex-
citing new tools for composition and sound design. Early work on unconditional
audio generation using autoregressive networks [1] has yielded impressive results,
at the cost of expensive training and long synthesis time. Other approaches show
the benefits of modelling audio using amplitude spectrograms [2] extracted from
the raw waveform in terms of synthesis speed, however they rely on phase estima-
tion algorithm that degrades the overall sound quality. The recent GANSynth [3]
model address this problem by generating both the amplitude spectrograms and
the corresponding instantaneous frequencies. They show that their approach is
superior to previous ones in terms of audio quality, while synthesizing faster than
real-time. In this project, you will adapt this approach to electronic music mod-
elling, and will evaluate the effect of generating instantaneous frequencies instead
of relying on phase estimation algorithms.

1 Introduction

Deep learning applied to audio signals proposes exciting new ways to perform speech generation,
musical composition and sound design. Recent works in deep audio modelling have allowed novel
types of interaction such as unconditional generation [1, 4, 5] or timbre transfer between instru-
ments [6]. However, these approaches remain computationally intensive, as modeling audio raw
waveforms requires dealing with extremely large temporal dimensionality.

To cope with this issue, the recent GANSynth model [3] uses mel scale spectrograms as an alterna-
tive to the raw waveform in order to perform class conditional neural audio synthesis. They show
that modelling instantaneous frequencies (see figure 1) gives better performance than the previous
phase estimation algorithm [7].

Figure 1: Amplitude and phase of a spectrogram.

During this project you will extend GANSynth to the unconditional neural audio generation task.
More specifically, you will create an autonomous system for electronic music synthesis based on a



dataset we provide. You will compare several adversarial training strategies, and demonstrate how
your approach can be used for creative purposes.

2 Getting started

We will use the pytorch deep learning library for this project. Many tutorials are available on their
website1, and it is strongly advised to become familiar with its use before continuing the project.

2.1 Building a simple GAN

Generative Adversarial Networks [8] are infamously difficult to implement and train, thus we start
with a simpler problem: adversarial digits generation. The MNIST dataset is composed of approx-
imately 70,000 examples of hand written digits (see figure 2), and is often used as a playground
to test new methods. You will start by implementing a simple convolutional GAN composed of a

Figure 2: Examples from the MNIST dataset. Each digit is a 28×28 pixels grey scale image.

discriminator and a generator. Even if you are free to propose your own architectures, we suggest
that you draw inspiration from DCGAN2 since it has been extensively tested, and is quite easy to
implement.

2.2 Benchmarking adversarial formulations

The discriminator is trained to classify true examples from generated ones, while the generator is
trained to make the discriminator fail (thus the adversarial term). There are several ways to define
this adversarial game from a computational point of view, from the very first GAN formulation [8] to
more complex variations [9]. Each method has its benefits and disadvantages, and you will compare
the following training strategies in term of stability and sample quality:

• Original GAN
• Least Square GAN
• Hinge GAN
• Wassertein GAN

We suggest that you write your code in a modular way so that you can reuse it for the rest of the
project.

3 Electronic music modelling

Now that you have gained experience with the creation and training of GANs, you will address the
electronic music generation task.

3.1 Spectral representation

As proposed in [3], we will leverage mel-scale spectrograms to build our generative model. The
first step is therefore to build an invertible chain of transformations in order to compute both the log

1https://pytorch.org/tutorials/
2https://bit.ly/3wuLAwS
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scale amplitude and instantaneous phase. We suggest that you build each transform as a separate
block with forward and inverse methods (see figure 3).
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Figure 3: Data transformation graph. Each block has its forward and inverse method so that the
overall analysis / synthesis process is simpler to implement.

3.2 Adapting GANSynth

Re-implement the architecture proposed in [3] without the class conditioning. We provide a large
scale electronic music dataset in the form of a memory mapped numpy array3.

We expect you to follow this roadmap

1. Model only amplitude spectrograms (synthesis with the griffin lim algorithm)

2. Add instantaneous frequency, compare with previous model

3. BONUS: add progressive growing procedure, compare with previous model

3.3 Demonstration

Randomly sample a smooth trajectory inside your high-dimensional latent space, and listen to your
generative model gradually evolve. This is the perfect time to try and create something nice! Plot the
corresponding evolution of several acoustical descriptors such as loudness and centroid to demon-
strate the smoothness of your latent space.
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