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Clustering

So far we have dealt with the classification problem

[}
 Based on labeled training data, we want to find the class of unlabeled
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* But what happens if we don’t have any prior knowledge on the data?
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ustering example
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Clustering

e Attach label to each observation or data points in a set

* You can say this is “unsupervised classification”

 Clustering is alternatively called as “grouping”

* You want to assign same label to data points that are “close”

* Thus, clustering algorithms rely on a distance metric between data points

 Sometimes, it is said that the for clustering, the distance metric is more
important than the clustering algorithm

Unsupervised

Data (input) ———» —— ‘Interesting structure’ (output)

Learning
* Should contain essential traits
1 * discard unessential details
* Provide a compact data summary
Objective function that * Interpretable by humans

expresses our notion of
interestingness for this data
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What we need for clustering

RIS Xpp e xlp-
Data matrix |7 =~ Y -~ Yip
*nl xn.f np
0
d(2,1) 0

Dissimilarity matrix |d4(3,1) d(3,2) 0

d(n)) d(n2) .. ..
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(Dis)similarity between objects

* Distances are normally used to measure the similarity or dissimilarity
between two data objects

 Some popular ones include: Minkowski distance:

s\ _ q _ q _ q
d(, ])_q\/(pci1 w1, b, 1)

where = (X, X;, ..., X;,) and j = (x;y, X;,, ..., X;,) are two p-dimensional data
objects, and g is a positive integer
e Ifg=1,dis Manhattan distance

d(i,j)= X, —le|+|xl.2 —xj2|+...+|xl.p —xjp |

 Ifg=2,dis Euclidean distance

N _ 2 _ 2 _ 2
d(, j)= quh x Pl = Pl —x )
e Also one can use weighted distance, parametric Pearson product moment

correlation, or other disimilarity measures.
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Distance-based clustering

e Assign a distance measure between data

* Find a partition such that:
— Distance between objects within partition (l.e. same
cluster) is minimized
— Distance between objects from different clusters is
maximised

* |ssues:
— Requires defining a distance (similarity) measure in
situation where it is unclear how to assign it
— What relative weighting to give to one attribute vs
another?
— Number of possible partition us superexponential
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A « good » clustering ?
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We can evaluate the distance
within-clusters

based on the centroid of each

With the membership functions
and the conditions

1 x;, € the j-th cluster
m, .
" 0 x, & thej-th cluster
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How to efficiently cluster ?

argming; m; (Z Z(xz yea)
D

based on the centroid of each
Memberships {ml.j} and centroids {Cj} are correlated.

So we could somehow reverse the paradigm

' ' 1 j=argmin(x, ~C))*
Given centroids {Cj}, m .= k /

0 otherwise

Given memberships {ml. j}, C. =1
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K-Means for clustering

* K-means algorithm

1. Start with a random guess
of cluster centers

2. Determine the membership
of each data points

3. Adjust the cluster centers

Loop with stop criterion based on
1. Iterations number

2. Quality criterion

3. Evolution of quality

.
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Formalising stop criterions

« Define a measure of cluster compactness
(total distance from the cluster mean)

Z ||Xn my, H = Z ln||Xn my ||~

XnECh n=1

where the cluster mean is defined as

mj = — Z X,
k Xn€Ch
- N : :
and N = > | 21, is the total number of points
allocated to cluster K

« Define a measure of cluster quality

N K
g]\" — Z Z Zkn ‘ ‘Xn — Ill]‘.’ ’2

n=1 k=1
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K-Means for clustering

* K-means algorithm

1. Ask user how many clusters
(here we set K=5)

2. Start with a random guess
of cluster centers

master
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K-Means for clustering

* K-means algorithm

1. Ask user how many clusters
(here we set K=5)

2. Start with a random guess
of cluster centers

3. Each datapoint finds out which
Center its closest to. (each

Center “owns” a set of points)
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K-Means for clustering
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* K-means algorithm

Ask user how many clusters
(here we set K=5)

Start with a random guess
of cluster centers

Each datapoint finds out which
Center its closest to. (each
Center “owns” a set of points)

Adjust the center by
computing the median of
the points set

36



0.8

0.6

0.4

0.2

K-Means for clustering

* K-means algorithm

1. Ask user how many clusters
(here we set K=5)

2. Start with a random guess
of cluster centers

3. Each datapoint finds out which
Center its closest to. (each
Center “owns” a set of points)

4. Adjust the center by
computing the median of
0 0.2 0.4 0.6 0.8 1 the points set

Computational Complexity: O(N) where N is the number of points?
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Problems of K-means

1. Obviously the number of clusters K
2. But even with the right number, will we find a good optima?

3. Also highly depends on the random start
4. We could perform several runs of K-means
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K-Means for clustering

e Strength

— Relatively efficient: O(tkn), where n is # objects, k is #
clusters, and t is # iterations. Normally, k, t << n.

— Often terminates at a local optimum. The global optimum
may be found using techniques such as: deterministic
annealing and genetic algorithms

e Weakness

— Applicable only when mean is defined, then what about
categorical data?

— Need to specify k, the number of clusters, in advance
— Unable to handle noisy data and outliers
— Not suitable to discover clusters with non-convex shapes
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Variations of K-means

* A few variants of the k-means which differ in
— Selection of the initial Kk means
— Dissimilarity calculations
— Strategies to calculate cluster means

* Handling categorical data: k-modes (Huang’98)
— Replacing means of clusters with modes

— Using new dissimilarity measures to deal with categorical
objects

— Using a frequency-based method to update modes of
clusters

— A mixture of categorical and numerical data: k-prototype
method
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K-medoids clustering

 K-means is appropriate when we can work with
Euclidean distances

« Thus, K-means can work only with numerical,
gquantitative variable types

« Euclidean distances do not work well in at least two
situations
— Some variables are categorical
— Outliers can be potential threats

* A general version of K-means algorithm called K-
medoids can work with any distance measure

« K-medoids clustering is computationally more intensive
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K-medoids algorithm

« Step 1: For a given cluster assignment C, find the
observation in the cluster minimizing the total distance to
other points in that cluster: i; =argmin Zd(x,-,xj).

=k

{iC(i)=k} ¢

« Step 2: Assign m =x.,k=12,...K

« Step 3: Given a set of cluster centers {m,, ..., m,},
minimize the total error by assigning each observation to
the closest (current) cluster center:

C@@)=argmmd(x;,,m ), i=1,....N
Isk<K

* |terate steps 1to 3
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Improving K-means

Group points by region
KD tree
SR tree

| Key difference
| - Find the closest center for
each rectangle

- Assign all the points within a
rectangle to one cluster

m I
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Choice of K?

« Can W, (C), i.e., the within cluster distance as a function
of K serve as any indicator?

* Note that W,(C) decreases monotonically with increasing

K. That is the within cluster scatter decreases with
Increasing centroids.

 Instead look for gap statistics (successive difference
between W, (C)):

W, W, K<K}>>W,-W, K=K}
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Choice of K?

« Can W,(C), i.e., the within cluster distance as a function of K serve as any
indicator?

* Note that W,(C) decreases monotonically with increasing K. That is the
within cluster scatter decreases with increasing centroids.

» Instead look for gap statistics (successive difference between W,(C)):

W, W, K<K})>>{W.,-W, K=K}
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Hierarchical clustering

* Use distance matrix as clustering criteria. This
method does not require the number of clusters k as
an input, but needs a termination condition

Step0 Stepl Step2 Step3 Step4
| | | | | ., agglomerative

< | | | | | divisive
Step4 Step3 Step2 Stepl StepO
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Hierarchical clustering

* Produces set of nested clusters organized as hierarchical tree

e Can be visualized as a dendrogram

— A tree-like diagram that records the sequences of merges or splits

— A clustering can be obtained by trimming the tree

4 = 0 | o

0.05-
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Hierarchical clustering

 Two main types of hierarchical clustering
— Agglomerative:
e Start with the points as individual clusters

* At each step, merge the closest pair of clusters until only one cluster
(or k clusters) left

— Divisive:
* Start with one, all-inclusive cluster

At each step, split a cluster until each cluster contains a point (or
there are k clusters)

Traditional hierarchical algorithms use a similarity or
distance matrix
— Merge or split one cluster at a time

Anr?ztl\e/\r P. Esling - Music Machine Learning
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Hierarchical clustering

Strength

* No assumptions on the number of clusters

— Any desired number of clusters can be obtained by ‘cutting’ the
dendogram at the proper level

* Hierarchical clusterings may correspond to meaningful taxonomies

— Example in biological sciences (e.g., phylogeny reconstruction, etc),
web (e.g., product catalogs) etc

Complexity

» Distance matrix is used for deciding which clusters to merge/split
e At least quadratic in the number of data points
* Not usable for large datasets
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Agglomerative clustering
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Most popular hierarchical clustering technique

Basic algorithm

1
2
3
4.
5
6

Compute the distance matrix between the input data points
Let each data point be a cluster
Repeat
Merge the two closest clusters
Update the distance matrix
Until only a single cluster remains

Key operation is the computation of the distance
between two clusters

Different definitions of the distance between clusters lead to
different algorithms



Hierarchical clustering

e Start with clusters of individual points and a
distance/proximity matrix

p1 | p2 | p3 | p4|pbd
p1
O O O p2
O O b3
p4
O .
O Distance/Proximity Matrix
O
O O O

® e o o - &6 o o o
p1 p2 p3 p4 [o]¢] p10 p11 p12
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Hierarchical clustering

* After some merging steps, we have some clusters
c1|c2| c3| ca|cs

C5
@ Distance/Proximity Matrix

p1 p2 p3 p4 p9 p10 p11 p12
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Hierarchical clustering

 Merge the two closest clusters (C2 and C5) and update the

distance matrix. c1|c2| c3| calcs

C1

(o) :

C4

C5
@ Distance/Proximity Matrix

.....................
. .
......

o® .

. .
. .

@& 171
.................................... LI .

p1 p2 p3 p4 p9 p10 p11 p12
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Hierarchical clustering

* “How do we update the distance matrix?”
C1

C2

C5| C3 | C4

c2ucs | ?

)

C3
@
T

| I

| I

m I

I
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Single-link

* Single-link distance between clusters C; and C,
is the minimum distance between any object
in C; and any object in C,

 The distance is defined by the two most
similar objects

Dsz(ciacj)= min, | {a’(x, y)‘xECi,yECle
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Single-link: example

 Determined by one pair of points, i.e., by one
link in the proximity graph.

1 12 13 14 15 ‘
111 1.00 0.90 0.10 0.65 0.20

12{ 0.90 1.00 0.70 0.60 0.50
13 0.10 0.70 1.00 0.40 0.30 r“ |7—|
14( 0.65 0.60 0.40 1.00 0.80

15 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Single-link: evolution

Euclidean Distance

o4
@ b
¢4 ik
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b 3 5
c 4
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Single-link: example

0.2
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Nested Clusters Dendrogram
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Single-link: strength

ey e T e T N
Original Points
» Can handle non-elliptical shapes
master

Two Clusters
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Single-link: limitations
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» Sensitive to noise and outliers
* It produces long, elongated clusters
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Complete-link

* Complete-link distance between clusters C,
and C; is the maximum distance between any
object in C; and any object in C,

 The distance is defined by the two most
dissimilar objects

l

D, (C.,Cj)= maxx,y{d(x,y)‘xECi,yECj}
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Complete-link: example

* Distance between clusters is determined by
the two most distant points in the different
clusters

1 12 13 14 15 ‘
11 1.00 0.90 0.10 0.65 0.20
121 0.90 1.00 0.70 0.60 0.50

13(0.10 0.70 1.00 0.40 0.30
14 0.65 0.60 0.40 1.00 0.80 r_‘ r_‘
5(0.20 0.50 0.30 0.80 1.00 L a3 4 s
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Complete-link: example

Euclidean Distance

I HE ] k
o b @ @ le C,d
&4 Al
T T T T
(1) (2) (3)

b C d b C d ....................... *ely ¢ d c’d
al2 5 6 a2]5]6 ab 5 6] a,b | ~6
b 35 b |3 |5/t ¢ LT4) e
C 4 C 4 | el e

Distance Matrix
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Complete-link: example

0.4L
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Nested Clusters Dendrogram
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Complete-link: strength
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* More balanced clusters (with equal diameter)
» Less susceptible to noise

Anriajtl\e/\r P. Esling - Music Machine Learning

76



Complete-link: limitations
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» Tends to break large clusters
» All clusters tend to have the same diameter — small

clusters are merged with larger ones
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Two Clusters
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Average-link

* Group average distance between clusters C.
and C; is the average distance between any
object in C; and any object in C,

1

D, C.C )=

avg

d(x,
X‘Cj‘ XE l.,yECj(x y)

Ci
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Average-link example

* Proximity of two clusters is the average of pairwise
proximity between points in the two clusters.

1 12 13 14 15 ‘
11{ 1.00 0.90 0.10 0.65 0.20

12| 0.90 1.00 0.70 0.60 0.50

13{ 0.10 0.70 1.00 0.40 0.30

14| 0.65 0.60 0.40 1.00 0.80 r“

15{ 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5
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Average-link example
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Nested Clusters
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Average-link

e Compromise between Single and Complete

e Strengths
— Less susceptible to noise and outliers

e Limitations

— Biased towards globular clusters

master
ATIAM



Centroid distance

* Centroid distance between clusters C, and C;is
the distance between the centroid r, of C. and
the centroid r; of C,

Dcentroids (Ci’cj)= d(riﬂrj)
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Ward’s distance

e Ward’ s distance between clusters C. and C.is the
difference between the total within cluster sum of squares
for the two clusters separately, and the within cluster sum
of squares resulting from merging the two clusters in
cluster C

.C.C )= SlenF s Sha-r} - Bleon)

* r.: centroid of C
* r.:centroid of C
° r.:centroid of C
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Ward’s distance

* Similar to group average and centroid distance
* Less susceptible to noise and outliers
* Biased towards globular clusters

* Hierarchical analogue of k-means
— Can be used to initialize k-means
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Comparisons

Average
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Time and space complexity

* For a dataset X consisting of n points

* O(n?) space; it requires storing the distance
matrix

* O(n?®) time in most of the cases

— There are n steps and at each step the size n?
distance matrix must be updated and searched

— Complexity can be reduced to O(n? log(n) ) time for
some approaches by using appropriate data
structures
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Divisive hierarchical clustering

e Start with a single cluster composed of all data points
* Split this into components
* Continue recursively

* Monothetic divisive methods split clusters using one
variable/dimension at a time

* Polythetic divisive methods make splits on the basis of
all variables together

* Any intercluster distance measure can be used

 Computationally intensive, less widely used than
agglomerative methods
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