Music Machine Learning #### IV – Unsupervised clustering Master ATIAM - Informatique Philippe Esling (esling@ircam.fr) Maître de conférences – UPMC Equipe représentations musicales (IRCAM, Paris) ### Clustering - So far we have dealt with the classification problem - Based on labeled training data, we want to find the class of unlabeled But what happens if we don't have any prior knowledge on the data? # Clustering example #### Clustering - Attach label to each observation or data points in a set - You can say this is "unsupervised classification" - Clustering is alternatively called as "grouping" - You want to assign same label to data points that are "close" - Thus, clustering algorithms rely on a distance metric between data points - Sometimes, it is said that the for clustering, the distance metric is more important than the clustering algorithm ### What we need for clustering $$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$ Dissimilarity matrix $$\begin{bmatrix} 0 & & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ \vdots & \vdots & \vdots & \vdots & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$ #### (Dis)similarity between objects - <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects - Some popular ones include: Minkowski distance: $$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$ where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p-dimensional data objects, and q is a positive integer • If q = 1, d is Manhattan distance $$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$ • If q = 2, d is Euclidean distance $$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2)}$$ Also one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures. #### Distance-based clustering - Assign a distance measure between data - Find a partition such that: - Distance between objects within partition (I.e. same cluster) is minimized - Distance between objects from different clusters is maximised #### Issues: - Requires defining a distance (similarity) measure in situation where it is unclear how to assign it - What relative weighting to give to one attribute vs another? - Number of possible partition us superexponential ### A « good » clustering? We can evaluate the distance within-clusters $$argmin_{C_j,m_{i,j}}(\sum_j \sum_i (x_i - C^j))$$ based on the centroid of each With the membership functions and the conditions $$m_{i,j} = \begin{cases} 1 & x_i \in \text{the j-th cluster} \\ 0 & x_i \notin \text{the j-th cluster} \end{cases}$$ $$\sum_{j} m_{i,j} = 1$$ \rightarrow any $x_i \in$ a single cluster #### How to efficiently cluster? $$argmin_{C_j,m_{i,j}}(\sum_j \sum_i (x_i - C^j))$$ based on the centroid of each Memberships $\left\{m_{i,j}\right\}$ and centroids $\left\{C_{j}\right\}$ are correlated. #### So we could somehow reverse the paradigm Given centroids $$\{C_j\}$$, $m_{i,j} = \begin{cases} 1 & j = \arg\min(x_i - C_j)^2 \\ 0 & \text{otherwise} \end{cases}$ Given memberships $$\{m_{i,j}\}$$, $C_j = \frac{\sum_{i=1}^n m_{i,j} x_i}{\sum_{i=1}^n m_{i,j}}$ #### K-means algorithm - 1. Start with a random guess of cluster centers - 2. Determine the membership of each data points - 3. Adjust the cluster centers **Loop** with stop criterion based on - 1. Iterations number - 2. Quality criterion - 3. Evolution of quality #### Formalising stop criterions Define a measure of cluster compactness (total distance from the cluster mean) $$\sum_{\mathbf{x}_n \in \mathcal{C}_k} ||\mathbf{x}_n - \mathbf{m}_k||^2 = \sum_{n=1}^N z_{kn} ||\mathbf{x}_n - \mathbf{m}_k||^2$$ where the cluster mean is defined as $$\mathbf{m}_k = \frac{1}{N_k} \sum_{\mathbf{x}_n \in \mathcal{C}_k} \mathbf{x}_n$$ and $N_k = \sum_{n=1}^N z_{kn}$ is the total number of points allocated to cluster K Define a measure of cluster quality $$\mathcal{E}_K = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{kn} ||\mathbf{x}_n - \mathbf{m}_k||^2$$ #### K-means algorithm - 1. Ask user how many clusters (here we set K=5) - 2. Start with a random guess of cluster centers #### K-means algorithm - Ask user how many clusters (here we set K=5) - 2. Start with a random guess of cluster centers - 3. Each datapoint finds out which Center its closest to. (each Center "owns" a set of points) #### K-means algorithm - 1. Ask user how many clusters (here we set K=5) - 2. Start with a random guess of cluster centers - 3. Each datapoint finds out which Center its closest to. (each Center "owns" a set of points) - 4. Adjust the center by computing the median of the points set #### K-means algorithm - 1. Ask user how many clusters (here we set K=5) - 2. Start with a random guess of cluster centers - 3. Each datapoint finds out which Center its closest to. (each Center "owns" a set of points) - 4. Adjust the center by computing the median of the points set Computational Complexity: O(N) where N is the number of points? #### Problems of K-means - 1. Obviously the number of clusters K - 2. But even with the right number, will we find a good optima? - 3. Also highly depends on the random start - 4. We could perform several runs of K-means #### Strength - Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n. - Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms #### Weakness - Applicable only when mean is defined, then what about categorical data? - Need to specify k, the number of clusters, in advance - Unable to handle noisy data and outliers - Not suitable to discover clusters with non-convex shapes #### Variations of K-means - A few variants of the k-means which differ in - Selection of the initial k means - Dissimilarity calculations - Strategies to calculate cluster means - Handling categorical data: k-modes (Huang'98) - Replacing means of clusters with <u>modes</u> - Using new dissimilarity measures to deal with categorical objects - Using a <u>frequency</u>-based method to update modes of clusters - A mixture of categorical and numerical data: k-prototype method ## K-medoids clustering - K-means is appropriate when we can work with Euclidean distances - Thus, K-means can work only with numerical, quantitative variable types - Euclidean distances do not work well in at least two situations - Some variables are categorical - Outliers can be potential threats - A general version of K-means algorithm called K-medoids can work with any distance measure - K-medoids clustering is computationally more intensive #### K-medoids algorithm - Step 1: For a given cluster assignment C, find the observation in the cluster minimizing the total distance to other points in that cluster: $i_k^* = \underset{\{i:C(i)=k\}}{\operatorname{arg\,min}} \sum_{C(i)=k} d(x_i, x_j)$. - Step 2: Assign $m_k = x_{i_k^*}, k = 1, 2, ..., K$ - Step 3: Given a set of cluster centers $\{m_1, ..., m_K\}$, minimize the total error by assigning each observation to the closest (current) cluster center: $$C(i) = \underset{1 \le k \le K}{\operatorname{arg \, min}} d(x_i, m_k), i = 1, ..., N$$ Iterate steps 1 to 3 #### Improving K-means #### Group points by region - KD tree - SR tree #### **Key difference** - Find the closest center for each rectangle - Assign all the points within a rectangle to one cluster #### Choice of K? - Can W_K(C), i.e., the within cluster distance as a function of K serve as any indicator? - Note that $W_K(C)$ decreases monotonically with increasing K. That is the within cluster scatter decreases with increasing centroids. - Instead look for gap statistics (successive difference between $W_{\kappa}(C)$): $$\{W_K - W_{K+1} : K < K^*\} >> \{W_K - W_{K+1} : K \ge K^*\}$$ #### Choice of K? - Can W_K(C), i.e., the within cluster distance as a function of K serve as any indicator? - Note that $W_K(C)$ decreases monotonically with increasing K. That is the within cluster scatter decreases with increasing centroids. - Instead look for gap statistics (successive difference between $W_{\kappa}(C)$): $$\{W_K - W_{K+1} : K < K^*\} >> \{W_K - W_{K+1} : K \ge K^*\}$$ Data points simulated from two pdfs $Log(W_K)$ curve Gap curve Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition - Produces set of nested clusters organized as hierarchical tree - Can be visualized as a dendrogram - A tree-like diagram that records the sequences of merges or splits - A clustering can be obtained by trimming the tree - Two main types of hierarchical clustering - Agglomerative: - Start with the points as individual clusters - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left - Divisive: - Start with one, all-inclusive cluster - At each step, split a cluster until each cluster contains a point (or there are k clusters) - Traditional hierarchical algorithms use a similarity or distance matrix - Merge or split one cluster at a time #### Strength - No assumptions on the number of clusters - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level - Hierarchical clusterings may correspond to meaningful taxonomies - Example in biological sciences (e.g., phylogeny reconstruction, etc), web (e.g., product catalogs) etc #### **Complexity** - Distance matrix is used for deciding which clusters to merge/split - At least quadratic in the number of data points - Not usable for large datasets ## **Agglomerative** clustering - Most popular hierarchical clustering technique - Basic algorithm - 1. Compute the distance matrix between the input data points - 2. Let each data point be a cluster - 3. Repeat - 4. Merge the two closest clusters - 5. Update the distance matrix - **6. Until** only a single cluster remains - Key operation is the computation of the distance between two clusters - Different definitions of the distance between clusters lead to different algorithms Start with clusters of individual points and a distance/proximity matrix p4 p5 **p1** р3 After some merging steps, we have some clusters | | C1 | C2 | С3 | C4 | C5 | |------------|----|----|----|----|-----------| | <u>C1</u> | | | | | | | C2 | | | | | | | СЗ | | | | | | | C4 | | | | | | | C 5 | | | | | | Merge the two closest clusters (C2 and C5) and update the distance matrix. #### **Distance/Proximity Matrix** • "How do we update the distance matrix?" #### Single-link Single-link distance between clusters C_i and C_j is the minimum distance between any object in C_i and any object in C_j The distance is defined by the two most similar objects $$D_{sl}(C_i, C_j) = \min_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$ #### Single-link: example Determined by one pair of points, i.e., by one link in the proximity graph. | | I 1 | 1 2 | 13 | 1 4 | 15 | |----|--------------------------------------|------------|------|------------|------| | 11 | 1.00
0.90
0.10
0.65
0.20 | 0.90 | 0.10 | 0.65 | 0.20 | | 12 | 0.90 | 1.00 | 0.70 | 0.60 | 0.50 | | 13 | 0.10 | 0.70 | 1.00 | 0.40 | 0.30 | | 14 | 0.65 | 0.60 | 0.40 | 1.00 | 0.80 | | 15 | 0.20 | 0.50 | 0.30 | 0.80 | 1.00 | ## Single-link: evolution #### **Euclidean Distance** | | b | c | d | |----------|---|---|---| | a | 2 | 5 | 6 | | b | | 3 | 5 | | c | | | 4 | **Distance Matrix** # Single-link: example **Nested Clusters** Dendrogram # Single-link: strength **Original Points** **Two Clusters** Can handle non-elliptical shapes # Single-link: limitations #### **Original Points** #### **Two Clusters** - Sensitive to noise and outliers - It produces long, elongated clusters ## Complete-link Complete-link distance between clusters C_i and C_j is the maximum distance between any object in C_i and any object in C_j The distance is defined by the two most dissimilar objects $$D_{cl}(C_i, C_j) = \max_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$ ## Complete-link: example Distance between clusters is determined by the two most distant points in the different clusters | | | 12 | | | | |----|------|------|------|------|--------------------------------------| | 11 | 1.00 | 0.90 | 0.10 | 0.65 | 0.20 | | 12 | 0.90 | 1.00 | 0.70 | 0.60 | 0.50 | | 13 | 0.10 | 0.70 | 1.00 | 0.40 | 0.30 | | 14 | 0.65 | 0.60 | 0.40 | 1.00 | 0.80 | | 15 | 0.20 | 0.50 | 0.30 | 0.80 | 0.20
0.50
0.30
0.80
1.00 | # Complete-link: example #### **Euclidean Distance** | | b | c | d | |----------|---|---|---| | a | 2 | 5 | 6 | | b | | 3 | 5 | | c | | | 4 | **Distance Matrix** # Complete-link: example **Nested Clusters** Dendrogram ## Complete-link: strength #### **Original Points** **Two Clusters** - More balanced clusters (with equal diameter) - Less susceptible to noise ## Complete-link: limitations - Tends to break large clusters - All clusters tend to have the same diameter small clusters are merged with larger ones #### Average-link Group average distance between clusters C_i and C_j is the average distance between any object in C_i and any object in C_i $$D_{avg}(C_i, C_j) = \frac{1}{|C_i| \times |C_j|} \sum_{x \in C_i, y \in C_j} d(x, y)$$ ## Average-link example • Proximity of two clusters is the average of pairwise proximity between points in the two clusters. | | I 1 | 12 | 13 | 1 4 | <u> 15</u> | |----|------------|------|------|------------|--------------------------------------| | 11 | 1.00 | 0.90 | 0.10 | 0.65 | 0.20
0.50
0.30
0.80
1.00 | | 12 | 0.90 | 1.00 | 0.70 | 0.60 | 0.50 | | 13 | 0.10 | 0.70 | 1.00 | 0.40 | 0.30 | | 14 | 0.65 | 0.60 | 0.40 | 1.00 | 0.80 | | 15 | 0.20 | 0.50 | 0.30 | 0.80 | 1.00 | # Average-link example **Nested Clusters** Dendrogram ## Average-link - Compromise between Single and Complete - Strengths - Less susceptible to noise and outliers - Limitations - Biased towards globular clusters #### Centroïd distance Centroid distance between clusters C_i and C_j is the distance between the centroid r_i of C_i and the centroid r_j of C_j $$D_{centroids}(C_i, C_j) = d(r_i, r_j)$$ #### Ward's distance Ward's distance between clusters C_i and C_j is the difference between the total within cluster sum of squares for the two clusters separately, and the within cluster sum of squares resulting from merging the two clusters in cluster C_{ij} $$D_{w}(C_{i}, C_{j}) = \sum_{x \in C_{i}} (x - r_{i})^{2} + \sum_{x \in C_{j}} (x - r_{j})^{2} - \sum_{x \in C_{ij}} (x - r_{ij})^{2}$$ - r_i: centroid of C_i - r_i: centroid of C_i - r_{ii}: centroid of C_{ii} #### Ward's distance - Similar to group average and centroid distance - Less susceptible to noise and outliers - Biased towards globular clusters - Hierarchical analogue of k-means - Can be used to initialize k-means # Comparisons ## Time and space complexity - For a dataset X consisting of n points - O(n²) space; it requires storing the distance matrix - O(n³) time in most of the cases - There are n steps and at each step the size n² distance matrix must be updated and searched - Complexity can be reduced to O(n² log(n)) time for some approaches by using appropriate data structures ## Divisive hierarchical clustering - Start with a single cluster composed of all data points - Split this into components - Continue recursively - Monothetic divisive methods split clusters using one variable/dimension at a time - Polythetic divisive methods make splits on the basis of all variables together - Any intercluster distance measure can be used - Computationally intensive, less widely used than agglomerative methods ## Prim / Kruskal